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In order to clarify the coexistence of a Fermi edge and the steplike multiphonon structure, recently observed
in the photoemission spectra �PES� of the boron-doped diamond, we apply a path-integral theory to calculate
the PES, using the many-impurity Holstein model in a simple cubic lattice. Being lightly doped by boron as an
acceptor, the diamond shows p-type character with an activation energy gap of about 0.37 eV. We find that,
due to the electron-phonon coupling and the increase of the dopant concentration, the impurity band extends up
to the top of valence band, and fills the gap gradually. The emergence of a clear Fermi edge is theoretically
demonstrated, indicating the strong itineracy of electrons from one impurity atom to another through those
intermediate carbon atoms. Simultaneously, the multiphonon satellite structure, a little below the Fermi level,
is also theoretically reproduced in the doped site PES, denoting the localization of electrons through the
coupling with Einstein phonons. Although we have used a simpler lattice structure than the real diamond one,
our exploration of the coexistence of the two intrinsic properties of electrons: itineracy and localization, well
agrees with the experimental findings.
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I. INTRODUCTION

The boron-doped diamond �BDD� has become one of the
most investigated materials since the remarkable discovery
of its superconductivity �SC�.1 So far, most researches have
been focusing on the very nature of phonon exchange
mechanism,2–5 which is still unclear though agreed to be re-
sponsible for the SC. It is well known that the pristine dia-
mond is an insulator with a wide band gap �about 5.5 eV�.
Being lightly doped with boron, it shows p-type character
with an activation energy gap of about 0.37 eV.6 Accompa-
nied with the superconducting phase, a semiconductor-metal
transition occurs when the doping percentage is increased to
a certain level.7,8 Recently, Ishizaka et al.9 declared the ob-
servation of a steplike multiphonon satellite structure in the
valence band photoemission spectra �PES�, approximately
distributed periodically at 0.150 eV below the Fermi level, in
addition to the emergence of a clear Fermi edge, indicating
the phase transition mentioned above on increasing the dop-
ant concentration. Compared with the scanned Raman scat-
tering spectrum, this side structure is supposed to be attrib-
uted to the strong electron-phonon �e-ph� coupling by these
authors.9 Giustino et al.10 also suggested that the 0.150 eV
phonon plays an important role in the SC by the first-
principles technique on the e-ph interaction of this material.

Meanwhile, this periodic satellite structure reminds one of
its similarity to that of a localized electron model,11 wherein
the coupling between electrons and Einstein phonons char-
acterizes the spectrum with discrete peaks of equal energy
interval. Thus, it is natural to infer that the e-ph coupling has
a close relation to this steplike structure as well. More im-
portantly, the Fermi edge and the steplike structure are ob-
served together, probably originating from the two basic
properties of electrons: itineracy and localization. It also
should be noted that the multiphonon structure appears not in

the well-known gap function of the SC, but in the PES of the
normal state. Hence, it seems quite unusual that this coexist-
ence is detected so clearly and directly. Because of this puz-
zling behavior as well as a probable connection with the SC,
the problem how this coexistence occurs, thus, turns out to
be a great challenge for the theorists.

The coherent potential approximation �CPA�,12 being a
standard method dealing with disordered systems, however,
has some limitation in explaining the emergence of the Fermi
edge. Because this theory tacitly assumes that the system
remains uniform even after the doping, thus it ensures the
presence of a certain Fermi edge at the very beginning, even
in the low doping cases, while the conventional treatments,
such as Midgal-Eliashberg theory, usually invoke perturba-
tion theories, and have difficulty in dealing with this disor-
dered system.

In this study, we use a path-integral theory13 to survey the
PES of BDD system. Correspondingly, we adopt a many-
impurity Holstein model based on a simple cubic lattice. Ac-
tually, the Holstein model14 has been widely used to discuss
the e-ph coupling problems in various cases. For example,
Ref. 16 studied the evolution of the PES with momentum in
the one-dimensional and two-dimensional pure systems, at
half-filling or non-half-filling. Using a Monte Carlo simula-
tion with the traveling cluster approximation, Ref. 17 has
investigated the effect of disorder on electronic transport
property in strong e-ph coupling systems of three dimen-
sions. There are also discussions about the dynamics of a
single electron in the Holstein model with18 or without19 dis-
order. In the present paper, we shall be concerned with the
doping and the e-ph coupling effects on the PES, especially
the quantum character of phonons seen in the PES, rather
than the classical one discussed in Ref. 17. To evaluate the
PES, we shall apply the path-integral theory to take into
account all kinds of e-ph scattering processes, which is tech-
nically impossible for the conventional perturbative methods.
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The main purpose of this work is to investigate the e-ph
coupling effect on the PES of a many-electron system, and
theoretically clarify the aforementioned coexistence, then in-
terpret the experimental findings in BDD. Here, it should be
stressed that we focus only on the energy region very close
to the Fermi level. Hence, we can use a simple cubic lattice
instead of the real diamond one to describe the various va-
lence band features, with no attention to the region far from
the Fermi level. Unlike the conventional approaches such as
CPA, the “doping” in this work is a random substitution,
according to a certain given doping rate, to describe the dis-
ordered situation in BDD. It should be noted that, in the
present problem, the so-called randomness and the doped
electron number are closely related and changed simulta-
neously, being different from both a simple randomness
problem and a simple doping problem.

II. MODEL AND METHODS

As mentioned, our model includes the following two
properties. One is the disorder of the system that some atoms
are replaced by the dopant in a certain ratio. The other is the
coupling between electrons and Einstein phonons �site-
localized lattice vibration�, being the simplest description of
e-ph interactions, usually called Holstein model. Its Hamil-
tonian ��H� is given as ��=1 throughout the work�,

H = − t �
�l,l��

�
�

�al�
† al�� + al��

† al�� − ��
l,�

nl� + �e�
l0,�

nl0�

+
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where t is the hopping energy, set at t=0.42 eV in the simu-
lations to match the real diamond band width. al�

† and al� are
the creation and annihilation operators of an electron with
spin � at site l. The electrons can hop only between the
nearest neighboring sites expressed by �l , l��. � stands for the
chemical potential of electrons, and �e is the potential dif-
ference after and before the substitution at the doped sites
labeled by l0. This parameter determines the formation and
the position of the impurity band, i.e., the activation gap. It is
determined according to the experimental value of about
0.37 eV. Ql is the dimensionless coordinate operator of the
phonon at site l, with a frequency �0. S denotes the e-ph
coupling constant. n̄l is the average electron number at site l.
To simplify the problem, we just consider the coupling at the
doped sites hereafter, because in pure diamond, there is no
evidence that the phonon satellite structure appears. It im-
plies that the coupling becomes important just after the dop-
ing, as discussed in Refs. 5 and 15. The doped boron atoms
will introduce a strong coupling between the localized vibra-
tional modes and electrons at around the Fermi surface of the
BDD. There is also an experimental confirmation of this fa-
vored coupling in Ref. 20.

By using the Trotter decoupling formula and inserting
the phonon eigenstate 	xl0

� of the operator Ql0
by
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	xl0

�, the Boltzmann operator can be written in a
path-integral form as13
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We should note that the electronic operators al��
�, nl��
�
have no real time dependence. The time argument 
 only
denotes the time ordering operated by T+. While xl0

�
� is a
time dependent c number. �Dx means the summation over
all possible paths.

We define a time evolution matrix R�
 ,x� along a path x
as

R�
,x� � T+ exp�− 

0
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j symbolically stands for site l and spin �, and 	0� means the
true electron vacuum. The one-body Green’s function of a
given path x is defined as

G�j
, j�
�,x� = − sign�
 − 
���T+a� j�
�a� j�
† �
���x, �7�

which can be derived as
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In Eq. �7�, the operator a� j�
� is the Heisenberg representation
of aj, and is really time dependent. After the path integral,
the ordinary Green’s function ��G�ll� ,
�
 is obtained as
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G�ll�,
� =
 Dxe−	����x�−�
G�l
,l�0,x� . �9�

Here, ��x� and � are the free energy along a given path x
and the total free energy, respectively. This Green’s function
is site dependent obviously.

In the numerical calculation, the path integral of Eq. �9� is
performed by the quantum Monte Carlo �QMC� simulation
with a path updating method similar to Ref. 21, which is
much more rapid and efficient than the standard Metropolis
algorithm. To avoid numerical errors, we have employed a
matrix factorization algorithm22 with quad precision. Since
the starting phonon configuration is generated randomly, it is
necessary to take enough extra QMC sweeps to reach the
system thermal equilibrium before measuring the electron
number or the Green’s function. Furthermore, in order to
reduce the correlation between the consecutive measure-
ments, we set an interval of adequate sweeps. In the QMC,
the chemical potential � is first determined by checking the
electron number.

Because of the broken translational symmetry of this dis-
ordered system, we cannot use Fourier transformation to get
the momentum dependent Green’s functions or the Green’s
function corresponding to the total density of state �DOS� by
a summation over the momenta. Nevertheless, we can make
use of the invariance of representation transformation to sum
up the one-body Green’s function G�ll� ,
� over sites as

G�
� =
1

N
�

l

G�ll,
� . �10�

Then the spectral function A��� can be derived through the
analytic continuation as

G�
� = − 

−�

+� e−
�

1 + e−	�A���d� , �11�

which is carried out here by an iterative fitting method intro-
duced in Ref. 16. Here, we should mention that in Eq. �10�,
N can be either the total system size or a part of it, such as all
the doped sites, depending on the site l we choose. That is to
say, we can calculate different spectra by selecting different
l, which will be shown and discussed in detail later. Finally,
the PES intensity function I��� is calculated as I���
=A���f��� by imposing the Fermi distribution f��� to com-
pare with the experimental results, since the PES experiment
only detects the occupied electronic states.

III. RESULTS AND DISCUSSIONS

Because we take into account the e-ph coupling only at
those doped sites, the phonon effect is not so clear in the
whole system spectrum after averaging over all sites. To
clarify the phonon quantum effect, we shall also present the
spectral intensity of doped sites.

First, as a reference, we compute the spectra for the
simple cubic lattice of different doping rates by the classical
Monte Carlo �CMC� simulation23 as shown in Fig. 1,
wherein the kinetic energy of the phonon is neglected and the

one-body Green’s function is obtained by directly diagonal-
izing the electronic Hamiltonian. The system size is
8�8�8, and the parameters are �0=0.25 eV, S=0.25 eV,
and 	=14.4 eV−1. Correspondingly, the dimensionless cou-
pling constant � �� S2

2d�0t , where d is the dimension� is 0.1.
From the whole system spectra �solid lines�, we can clearly
see the emergence of a Fermi edge on increasing the doping
percentage. In the low doping case, the impurity levels are a
little above the top of the valence band, and the material is a
semiconductor with a small activation gap. In the higher
doping case, the impurity band expands up to the top of the
valence band, and the gap is filled up. Thus, the sample
undergoes a semiconductor-metal transition, and the elec-
trons can move freely from one impurity atom to another by
tunneling through the intermediate carbon atoms. As for the
spectra of doped sites �dashed lines�, apart from the main
impurity band, there is a long tail extending almost over the
valence band. This is due to the modification of impurity
levels by an admixture of the continuum valence band, as
described by the Fano effect.24 This effect is also exhibited in
Ref. 22 by using a static single-impurity model to explain the
origin of the multipeak spectra.

In Fig. 2, we calculate the spectra for the simple cubic
lattice of different doping rates by the QMC method, which
is free from the approximation used in the previous CMC.
The parameters are the same as in Fig. 1. Since the system
size is small, 4�4�4, the value of the doping rate seems to
be relatively high, but the absolute number of the doped sites
is small. In the whole system spectra �solid lines�, the
semiconductor-metal phase transition is reproduced com-
pletely with the increase of doping rate. In order to illustrate
the different contributions to the DOS from doped atoms and
undoped atoms, the undoped site spectrum �dashed line� and
the whole system spectrum �solid line� near the Fermi level
are shown as an inset in Fig. 2�c�. It is obvious that the
disordered states in the PES make the activation gap smaller.

In Fig. 2, for the doped site spectra �dashed lines�, a pho-
non satellite structure is clearly seen in each panel, lying a
little below the Fermi level, in addition to the aforemen-
tioned Fano tail. This side structure has not been found in the
classical cases, and obviously comes from the phonon quan-
tum property in the e-ph coupling, while its shape is should-
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FIG. 1. The spectra for the simple cubic lattice of different
doping rates by the QMC. The zero is the position of the Fermi
level. Dotted lines and solid ones denote the spectra of doped sites
and the whole system, respectively.
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erlike instead of the �-function-like peaks given in the local-
ized electron model.11 Actually, in our QMC simulations, we
have used several different values of phonon frequency be-
tween 0.10 and 0.30 eV. The phonon structures are observed
in all these cases, but most clearly when �0�0.25 eV, due to
low resolution and temperature limitation of the QMC ap-
proach. Although we show only the results of �0=0.25 eV
here, we believe the physical essence of the steplike satellite
structure is already captured through this calculation.

We should note that in the three panels of Fig. 2, the
positions of the phonon side peaks �dashed lines�, 0.3 eV in
�a�, 0.5 eV in �b�, and 0.6 eV in �c�, are a little different from
the ones expected from the phonon frequency we have used
��0=0.25 eV�. As discussed in Refs. 16 and 25, the PES of a
uniform system is determined by the simultaneous momen-
tum and energy conservation of the e-ph system. The energy
interval ����� between the zero-phonon �no e-ph scattering�
peak and the single-phonon one is dependent not only on the
phonon frequency but also on the electron energy band by
the formula ��= ��p+q+�−q�−�p, where �p denotes the en-
ergy of an original photoemitted electron with momentum p.
It changes to �p+q+�−q after emitting a phonon of momen-
tum −q. The localized electron model is a special case,
wherein the electron is pinned at one site. Thus, the self-
scattering process guarantees that the interval is decided only
by the phonon frequency. Using Einstein phonons, it is natu-
rally of an equal interval. As for the present model, it bears
similarities to the above two cases, as denoted in the Hamil-
tonian. In the low doping rate case such as Fig. 2�a�, the
impurity levels are few or the impurity band is very shallow,
which is similar to the localized electron case, then the inter-
val between the zero-phonon peak and the single-phonon
peak is almost equal to the Einstein phonon frequency. In
heavily doped samples such as shown in Figs. 2�b� and 2�c�,
the impurity band expands and its shape plays greater roles,
then the side structure appears to be much wider and irregu-
lar in position. At the same time, this single-phonon peak is
also modified by the impurity band to shift a little from the
original position of 0.25 eV and become asymmetric accord-
ing to the aforementioned Fano effect. When combined to-
gether, it presents as a shoulderlike shape in the doped site

spectra, with irregular energy intervals, even within the Ein-
stein phonon model.

Obviously, the e-ph coupling also greatly contributes to
the expansion of the impurity band and the filling of the
activation gap. As shown in Fig. 2, the phonon side structure
lies a little below the Fermi level, at the very scope of the
semiconductor gap. If the e-ph effect is strong or the doping
rate is high, this side structure expansion in the doped site
spectra can contribute much to the whole system spectra. In
Fig. 3, we give the spectra of a low doping rate, same as Fig.
2�a�, but increasing the coupling constant to 0.5 eV instead
of S=0.25 eV used in Figs. 1 and 2. Then, the � is 0.4.
Comparing with Fig. 2�a�, the strong coupling between the
electrons and the phonons not only greatly intensifies the
single-phonon peak, but also arouses double-phonon or even
multiphonon scattering processes, because another shoulder
appears clearly besides the investigated single-phonon one
and the Fano tail in the doped sites spectrum �dashed line�.
Thus, the localization character of electrons is exhibited in-
cisively and vividly. As discussed above, this effect can ex-
pand the impurity band to fill the gap, thus making the phase
transition occur, as shown clearly in the whole system spec-
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FIG. 2. The spectra for the
simple cubic lattice of different
doping rates by the QMC. The
zero is the position of the Fermi
level. Dotted lines and solid ones
denote the spectra of doped sites
and the whole system, respec-
tively. The inset in �c� is the whole
system spectrum �solid curve� and
the undoped site spectrum �dashed
curve� near the Fermi level.
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FIG. 3. The spectra for doped simple cubic lattice with an in-
termediate e-ph coupling. The zero is the position of the Fermi
level. The dotted �solid� line is the spectrum of doped sites �the
whole system�. The inset is a zoom in on the solid line near the
Fermi level.
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trum �solid line�. Though obscure, we can even affirm the
steplike shape in the whole system spectrum, which locates
at the very position of the single-phonon peak in the doped
site spectra. The region near the Fermi level is zoomed in at
the inset. From this figure, we can see clearly the coexistence
of a Fermi edge and the steplike multiphonon satellite struc-
ture.

The multiphonon process can be clearly seen only in the
larger S case. While in the small S case, only the single-
phonon process can be observed. So, we just pick two typical
S cases �weak one and intermediate one� for this paper. They
are enough to clarify the physics and the experiment.

As mentioned, the path-integral theory we used here has
one more advantage over the CPA. It can distinguish the
different components in the material as we have done in
calculating the spectra of doped and undoped sites. In reality,
this differentiation can be achieved by the resonance PES25

experiments. Tuning the incident photon energy to stimulate
the atom core-level absorption excitation, the possible imme-
diate Auger decay emits an electron, which can interfere with
a directly photoemitted valence band electron. The overlap
of these two electrons can be described as a function of the
incident photon energy by the so-called Fano line shape.24

For the material BDD, the excitation energy of carbon core-
level 1S to the top of the valence band is about 284 eV,
much different from that of boron, which is about 190 eV.
Therefore, by sweeping the photon energy from low values
through the above values, the spectrum reflecting the boron
atom core-level absorption can be observed first, and then
the carbon atoms; thus, the different components are identi-
fied.

IV. CONCLUSION

In summary, we have calculated the PES of the doped
simple cubic lattice by applying a path-integral theory to the
many-impurity Holstein model to reproduce the coexistence
of a Fermi edge and the multiphonon satellite structure,
which embodies the coexistence of the two intrinsic at-
tributes of electrons: itineracy and localization. The one-
body lattice Green’s function is calculated by the QMC
method to derive the spectral function. Due to the e-ph cou-
pling and the increase of dopant concentration, the impurity
band extends up to the top of the valence band, and then fills
the semiconductor gap gradually. The semiconductor-metal
transition takes place. Thus, the electrons can itinerate from
one impurity atom to another one through those intermediate
carbon atoms. At the same time, the coupling between elec-
trons and Einstein phonons induces the multiphonon steplike
satellite structure, indicating the localization of the electrons
by Einstein phonons. Though using a simple lattice structure,
our theoretical interpretation is quite important to clarify the
coexistence of a Fermi edge and the steplike satellite struc-
ture detected in the PES of the BDD. Since silicon has a
similar lattice structure to diamond, and the doping with bo-
ron is also substitutional,26 these characteristics are also ex-
pected in boron-doped silicon, in which the SC is discovered
recently.26
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